

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering Course Syllabus

Course Syllabus Study Plan 2021: Power and Control Track

Study Han 2021. I ower and Control Hack			
Course Code	Course Name	Credits	Contact Hours
0401230	Electronic Circuits and Devices	3	3 T

INSTRUCTOR/COORDINATOR		
Name	Dr. Ziyad Al Tarawneh	
Email	zdtarawneh@mutah.edu.jo	
Office Hours	11:00-12:00 (Sun, Tues, Thur)	

TEXTBOOK			
Title	Electronic Devices and Circuit Theory		
Author/Year/Edition	Robert Boylestad,11thedition		
Other Supplemental Materials			
Title	Principles of Electronic Circuits,		
Author/Year/Edition	by: Stanley G.Burns, Second Edition		

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

This course aims to provide students with information about: Basic of Semiconductor materials and PN junction, Diode: Principle, Operation and Characteristics, Diode types, Diode applications: Rectifiers, Clampers, and Clippers. The operation, structure, characteristics, and biasing configurations of: BJT, JFET, and MOSFET. Analysis techniques and design principles of amplifier circuits and Operational Amplifier.

B. Pre-requisites (P) or Co-requisites (C)

Electric Circuits 2 (0401212) (**P**)

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

CLO 1: Understand semiconductor fundamentals [1]

<u>CLO 2</u>: Understand the structure and the operation of the electronic devices like diodes, and Transistors BJT and FET [1].

<u>CLO 3:</u> Analyze and Design electronic circuits as rectifier circuit, clamper, and clipper circuits [2].

CLO 4: Understand theory, DC models, and biasing of bipolar junction transistors [1].

CLO 5: Understand the theory, DC models, and biasing of field effect transistors. [1].

CLO6: Analyze and Design amplifier circuits and Operational Amplifiers. [2].

B. Student Learning Outcomes (SLOs) Addressed by the Course						
1	2	3	4	5	6	7
✓	✓					

BRIEF LIST OF TOPICS TO BE COVERED			
List of Topics	No. of Weeks	Contact Hours	
Semiconductor Materials	1	3	
Doping, The P-type and N-type	2	6	
The PN junction ,The Diode, : Principle, Operation and Characteristics, Diode types	2	6	
Diode applications : Rectifiers , Clampers, Clippers	2	6	
Bipolar Junction Transistors	1	3	
BJT biasing	1	3	
Field Effect Transistors	1	3	
FET biasing	1	3	
Analysis techniques and design principles of amplifier circuits and Operational Amplifiers.	3	9	
Total	14	42	

EVALUATION		
Assessment Tool	Due Date	Weight (%)
Mid Exam	According to the university calendar	30
Course Work (Homeworks, Quizzes, Projects,etc.)	One week after being assigned	20

Final Exam	According to the university calendar	50
------------	--------------------------------------	----

	ABET's Students Learning Outcomes (Criterion # 3)			
	Relationship to program outcomes			
ABET 1-7		Engineering Student Outcomes		
1	\checkmark	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics		
2	V	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.		
3		an ability to communicate effectively with a range of audiences.		
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.		
5		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.		
6		an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.		
7		an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.		